首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3783篇
  免费   226篇
  国内免费   419篇
林业   215篇
农学   292篇
基础科学   336篇
  1333篇
综合类   1169篇
农作物   275篇
水产渔业   115篇
畜牧兽医   489篇
园艺   85篇
植物保护   119篇
  2024年   13篇
  2023年   65篇
  2022年   88篇
  2021年   106篇
  2020年   114篇
  2019年   141篇
  2018年   88篇
  2017年   149篇
  2016年   167篇
  2015年   138篇
  2014年   171篇
  2013年   250篇
  2012年   302篇
  2011年   265篇
  2010年   242篇
  2009年   279篇
  2008年   248篇
  2007年   292篇
  2006年   210篇
  2005年   208篇
  2004年   113篇
  2003年   117篇
  2002年   81篇
  2001年   61篇
  2000年   79篇
  1999年   52篇
  1998年   56篇
  1997年   46篇
  1996年   53篇
  1995年   48篇
  1994年   28篇
  1993年   34篇
  1992年   18篇
  1991年   25篇
  1990年   22篇
  1989年   21篇
  1988年   14篇
  1987年   14篇
  1986年   4篇
  1985年   3篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有4428条查询结果,搜索用时 15 毫秒
61.
[目的]比较不同竹种林下土壤的营养元素含量。[方法]在福建农林大学百竹园内选取大明竹、牡竹、角竹、花巨竹和大木竹5个竹种,分别于春、夏、秋、冬4个季节对其林下土壤进行"S"型多点采样,对其氮、磷、钾含量进行测定。[结果]大明竹、牡竹、角竹、花巨竹和大木竹5个竹种林下土壤的营养元素含量皆较高,但各竹种之间的营养元素含量有显著差异,且各竹种在不同季节的营养元素含量也有明显差异。其中大明竹林下土壤的营养元素含量最高,且最为稳定,牡竹相对较差。[结论]在福建地区,大明竹对营养元素的产生及维系稳定具有良好的能力,可成为该地区城市观赏用竹及发展林下经济的优良竹种。  相似文献   
62.
Wheat–cotton rotations largely increase crop yield and improve resources use efficiency, such as the radiation use efficiency. However, little information is available on the nitrogen (N) utilization and requirement of cotton under wheat–cotton rotations. This study was to determine the N uptake and use efficiency by evaluating the cotton (Gossypium hirsutum L.) N use and the soil N balances, which will help to improve N resource management in wheat–cotton rotations. Field experiments were conducted during 2011/2012 and 2012/2013 growing seasons in the Yangtze River region in China. Two cotton cultivars (Siza 3, mid-late maturity with 130 days growth duration; CCRI 50, early maturity with 110 days growth duration) were planted under four cropping systems including monoculture cotton (MC), wheat/intercropped cotton (W/IC), wheat/transplanted cotton (W/TC) and wheat/direct-seeded cotton (W/DC). The N uptake and use efficiency of cotton were quantified under different cropping systems. The results showed that wheat–cotton rotations decreased the cotton N uptake through reducing the N accumulation rate and shortening the duration of fast N accumulation phase as compared to the monoculture cotton. Compared with MC, the N uptake of IC, TC and DC were decreased by 12.0%, 20.5% and 23.4% for Siza 3, respectively, and 7.3%, 10.7% and 17.6% for CCRI 50, respectively. Wheat–cotton rotations had a lower N harvest index as a consequence of the weaker sink capacity in the cotton plant caused by the delayed fruiting and boll formation. Wheat–cotton rotations used N inefficiently relative to the monoculture cotton, showing consistently lower level of the N agronomic use efficiency (NAE), N apparent recovery efficiency (NRE), N physiological efficiency (NPE) and N partial factor productivity (NPFP), particularly for DC. Relative to the mid–late maturity cultivar of Siza 3, the early maturity cultivar of CCRI 50 had higher N use efficiency in wheat–cotton rotations. An analysis of the crop N balance suggested that the high N excess in preceding wheat (Triticum aestivum L.) in wheat–cotton rotations led to significantly higher N surpluses than the monoculture cotton. The N management for the cotton in wheat–cotton rotations should be improved by means of reducing the base fertilizer input and increasing the bloom application.  相似文献   
63.
The Nitrates Directive (91/676/EEC, Anonymous, 1991) was developed in Europe to limit environmental threats from intensive livestock farming and N fertilizer applications to crops. It imposed several rules on farmers and public bodies, one of which was nutrient fertilization plan adoption. Here we use results from the Tetto Frati (Northern Italy) Long-Term Experiment to verify the terms and coefficients in the official Italian guidelines and evaluate the limitations imposed to organic fertilization amounts. For this purpose, we mined long-term experimental data of crop yield, N uptake, N use efficiency, and soil organic matter content from miscellanea cropping systems fertilized with farmyard manure (FYM) and bovine slurry (SLU), typical of a dairy farm in Northern Italy. N fertilization efficiency indicators (Removal to Fertilizer ratio, Apparent Recovery and Nitrogen Fertilizer Replacement Value) indicated that in the long run, FYM behaved similarly to urea, and better than SLU. Even N supply rates as high as 250 kg N ha−1 were justified by high rates of crop removal. In fact, among the terms of the mass-balance equation, SOM mineralization was found to be most relevant, followed by meadow rotation residual effects. We conclude that a revised Nitrates Directives application scheme could be more relaxed in its application limit of manure-N, but should be more ambitious in setting efficiency coefficients for manure fertilization.  相似文献   
64.
Despite its importance to energy flow and nutrient cycling the process of fine root decomposition has received comparatively little detailed research. Disruption of the fine root-soil interface during preparation of root litterbags for decomposition studies could affect decay rates and nutrient mobilization in part by altering the community of decay organisms. We compared rates of decomposition and nutrient release from fine roots of pine between litterbags and intact cores and characterized the fungal community in the decomposing roots. Fine root decomposition was about twice as fast overall for intact cores than litterbags, and rapid mobilization of N and P was observed for roots in cores whereas nutrients were immobilized in litterbags. Fungal communities characterized using 454 pyrosequencing were considerably different between decaying roots in intact cores and litterbags. Most interesting, taxa from ectomycorrhizal fungal orders such as Boletales, Thelephorales and Cantharellales appeared to be more common in decaying roots from cores than litterbags. Moreover, the rate of N and P mobilization from decaying fine roots was highly correlated with taxa from two orders of ectomycorrhizal fungi (Thelephorales, Cantharellales). Although we caution that DNA identified from the decaying roots cannot be conclusively ascribed to active fungi, the results provide tentative support for a significant role of ectomycorrhizal fungi in decomposition and nutrient mobilization from fine roots of pine.  相似文献   
65.
Net radiation (Rn) is a key component of the surface energy balance, but it is expensive and difficult to measure accurately. For these reasons, Rn is often predicted in evapotranspiration (ET) calculations with a model requiring measurements of incoming shortwave radiation, air temperature, and vapor pressure. We compared Rn predictions from the Rn sub-model used in the American Society of Civil Engineers (ASCE) standardized reference ET equation to mean Rn measurements from five 4-component reference net radiometers. The radiometers were part of a recent comparison study of multiple net radiometer models conducted over irrigated and clipped turfgrass in northern Utah (Blonquist et al., 2009). In the Rn model, net shortwave radiation is determined by direct measurement of solar radiation and an assumed value of albedo for the surface (0.23 for fully vegetated surfaces), and net longwave radiation is calculated with a Brunt (1932, 1952) approach for predicting net surface emissivity, calculated from near surface vapor pressure. Additionally, the ratio of measured incoming shortwave radiation to predicted clear-sky shortwave radiation is used as a surrogate variable for cloud cover in the net longwave radiation calculation. Relative to the reference Rn measurements (average of five 4-component net radiometers), modeled Rn was high during the day by an average of 8.6% and high in magnitude (more negative) at night by an average of 13.4% over hourly time intervals. Daily total Rn calculated by summing the hourly model predictions was always higher than the reference measurements, by an average of 8.1%, whereas daily total Rn calculated from the model over daily time intervals was closer to the reference measurements, 2% high on average. The model Rn error during the day was partly caused by the assumption in the model that surface albedo is a constant value of 0.23. Measurements showed albedo ranged from approximately 0.21 at solar noon to 0.30 near the beginning and end of the day, with a mean value of 0.23. However, most of the model Rn error was due to the prediction of net longwave radiation, where the empirical equation in the model typically yielded values that were too low in magnitude (less negative), by approximately 20% on average, but the error was dependent on time of day. The Rn error at night was largely caused by the inability to measure the surrogate for cloud cover at night, which relies on measurement of solar radiation from a previous time period of sufficient solar zenith angle. All five of the net radiometer models tested in the comparison study matched the mean of the reference net radiometers better than the ASCE model. When modeled hourly Rn was used to calculate ET over hourly time intervals, or when hourly ET values were summed to yield daily ET, ET was typically high, by 6% on average, relative to ET calculated from measured reference Rn. When modeled Rn was calculated over daily time intervals and used to calculate ET over daily time intervals, ET was more accurate, 1% high on average, relative to ET calculated over daily time intervals from measured reference Rn. While new models for Rn are being developed, the sub-model in the ASCE standardized reference ET equation has been in use for the past two decades in thousands of ET stations. As newer models are developed we hope to use this data set to evaluate them.  相似文献   
66.
Enhancing water productivity is often recommended as a “soft option” in addressing the problem of increasing water scarcity. However, improving water productivity, particularly through water reuse, incurs additional investment and may result in increased greenhouse gas (GHG) emissions. In this study, we analysed the water productivity and GHG implications of water reuse through pumping groundwater and creek water, and compare this with gravity-fed canal irrigation in the Upper Pampanga River Integrated Irrigation System (UPRIIS) in the Philippines.Water productivity indicators show that water reuse contributes significantly to water productivity. For example, water productivity with respect to gross inflow (WPgross) with water reuse (0.19 kg grain/m3) is 21% higher than without water reuse (0.15 kg grain/m3). However, there is a tradeoff between increasing water productivity and water reuse as water reuse increases GHG emissions. The estimated GHG emission from water reuse (pumping irrigation) is 1.47 times higher than without water reuse (gravity-fed canal irrigation). Given increasing concerns about climate change and the need to reduce carbon emissions, we recommend that a higher priority be given to water reuse only in areas where water scarcity is a serious issue.  相似文献   
67.
研究了柘林湾沿岸对虾养殖产生的环境氮磷负荷及其来源的数量和比例。2006年柘林湾沿岸对虾养殖产生的环境氮负荷为210.21t,其中来源于对虾的排泄氮、粪氮和残饵氮分别为157.10t、39.61t和13.50t;环境磷负荷为45.45t,其中排泄磷、粪磷和残饵磷分别为4.93t、24.87t和15.65t。对虾养殖环境氮负荷主要来源于对虾的排泄,占氮负荷的74.74%,而磷负荷主要源自粪便,占磷负荷的54.72%。柘林湾沿岸对虾养殖的环境氮磷负荷量以湾北部沿岸最大,北部、西部和东部沿岸环境氮负荷分别为144.86t、53.99t和11.36t,环境磷负荷分别为31.32t、11.68t和2.46t。  相似文献   
68.
Automated residential irrigation systems tend to result in higher water use than non-automated systems. Increasing the scheduling efficiency of an automated irrigation system provides the opportunity to conserve water resources while maintaining good landscape quality. Control technologies available for reducing over-irrigation include evapotranspiration (ET) based controllers, soil moisture sensor (SMS) controllers, and rain sensors (RS). The purpose of this research was to evaluate the capability of these control technologies to schedule irrigation compared to a soil water balance model based on the Irrigation Association (IA) Smart Water Application Technologies (SWAT) testing protocol. Irrigation adequacy and scheduling efficiency were calculated in 30-day running totals to determine the amount of over- or under-irrigation for each control technology based on the IA SWAT testing protocol. A time-based treatment with irrigation 2 days/week and no rain sensor (NRS) was established as a comparison. In general, the irrigation adequacy ratings (measure of under-irrigation) for the treatments were higher during the fall months of testing than the spring months due to lower ET resulting in lower irrigation demand. Scheduling efficiency values (measure of over-irrigation) decreased for all treatments when rainfall increased. During the rainy period of this testing, total rainfall was almost double reference evapotranspiration (ETo) while in the remaining three testing periods the opposite was true. The 30-day irrigation adequacy values, considering all treatments, varied during the testing periods by 0-68 percentile points. Looking at only one 30-day testing period, as is done in the IA SWAT testing protocol, will not fully capture the performance of an irrigation controller. Scheduling efficiency alone was not a good indicator of controller performance. The amount of water applied and the timing of application were both important to maintaining acceptable turfgrass quality and receiving good irrigation adequacy and scheduling efficiency scores.  相似文献   
69.
The Australian greenhouse industry is primarily dominated by low-cost hydroponic greenhouses for delivery of water and nutrients to plants to grow a variety of vegetable crops including cucumber and tomato. The nutrient rich drainage water from these greenhouses is generally released into the local environment causing pollution concerns. This study was initiated to investigate the opportunities in recycling drainage water to increase water and nutrient-use efficiency of hydroponic greenhouses and reduce the environmental impact of the drainage water discharge. Results indicated that a total of 4.15 ML/ha of irrigation water was applied during the 13 weeks crop growing period of which 2.56 ML/ha was drained off and 1.59 ML/ha was used to meet the crop evapotranspiration demand. The study showed that the recycling of the drainage water resulted in a 33% reduction in potable water used for irrigation in cucumber production. The drainage water contained 59% applied N, 25% applied P and 55% applied K and illustrated the potential for nutrient recovery and production cost savings through the reuse of drainage water. This case study demonstrates that some relatively simple changes in irrigation practices within greenhouse systems to recycle drainage water can considerably improve sustainability of low-cost hydroponic greenhouses and help minimise the environmental footprint of the greenhouse industry.  相似文献   
70.
利用配有相对独立的供、排水系统的测坑研究间歇灌排、间歇灌连续排、灌排平衡3种水管理方式下稻田对养殖肥水的净化效果。研究结果表明:①3种水管理方式下稻田对养殖肥水中养分均有显著的去除率,其中,对不同形态的氮而言,NH4^+-N的去除率优于NO3^--N;对不同物质而言,对氮、磷的去除率优于CODMn;②对不同的水管理方式...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号